

Linear Models, ANOVA, and ANCOVA

Emmanuel Paradis

Institut Pertanian Bogor November 5, 2012 Three typical examples of biological data sets:

1. Measures of yield of peas on 24 plots with application of nitrogen (N), phosphorus (P), and/or potassium (K). The plots were distributed on 6 blocks of 4:

```
block N P K yield
1 1 0 1 1 49.5
2 1 1 1 0 62.8
3 1 0 0 0 46.8
...
23 6 0 1 1 53.2
24 6 0 0 0 56.0
```

2. Morphometric measurements on 200 individual of the crab *Leptograpsus variegatus*. Five measures, sex and colour:

```
Colour sex FL RW CL CW BD

B M 8.1 6.7 16.1 19.0 7.0

B M 8.8 7.7 18.1 20.8 7.4

B M 9.2 7.8 19.0 22.4 7.7
```

3. Survival times of 33 patients with leukemia with respect to a treatment and white cell counts:

	While	cells	counts	Treatment	Surv.	time
1			2300	present		65
2			750	present		156
3			4300	present		100
	•					

A very general question in biology is: explaining variation in a quantity with respect to one or several variables.
Suppose for a moment that the quantity we are studying is completely determined by one or two variables: then prediction is easy and testing hypothesis is simple

A statistical population is characterized by its *distribution*.

A statistical population is characterized by its *distribution*.

Taking two samples from the same statistical population will lead to differences that are due to chance.

A statistical population is characterized by its *distribution*.

Taking two samples from the same statistical population will lead to differences that are due to chance.

William Gosset (1876–1937), better known as "Student", invented a test to compare the means of two samples: the t-test. The null hypothesis (H₀) is that both samples come from the same population.

A statistical population is characterized by its *distribution*.

Taking two samples from the same statistical population will lead to differences that are due to chance.

William Gosset (1876–1937), better known as "Student", invented a test to compare the means of two samples: the t-test. The null hypothesis (H₀) is that both samples come from the same population.

What if there are more than two samples? This is the analysis of variance invented by R. A. Fisher (1890–1962).

Consider a case with four samples: the ANOVA assumes that each sample follows a normal distribution with means μ_1 , μ_2 , μ_3 , and μ_4 .

The observations: $x_{1i} \sim \mathcal{N}(\mu_1, \sigma^2)$, $x_{2i} \sim \mathcal{N}(\mu_2, \sigma^2)$, etc.

H₀: all four means are equal

Similar assumptions are made in a linear regression:

$$y_i = \beta x_i + \alpha + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Similar assumptions are made in a linear regression:

$$y_i = \beta x_i + \alpha + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

It means that for a given value of x: $y_i \sim \mathcal{N}(\bar{y}, \sigma^2)$ with $\bar{y} = \beta x + \alpha$.

Similar assumptions are made in a linear regression:

$$y_i = \beta x_i + \alpha + \epsilon_i \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

It means that for a given value of x: $y_i \sim \mathcal{N}(\bar{y}, \sigma^2)$ with $\bar{y} = \beta x + \alpha$.

Suppose we do many observations of y for this value of x = -0.5:

Suppose we do now many observations of y for x = 0.5.

In reality, we often don't have so many points, but the assumptions of the linear still hold.

The ANOVA and the linear regression models are the same, the difference is that the predictor x is discrete or continuous.

How to use a categorical (discrete) variable in this formulation?

The ANOVA and the linear regression models are the same, the difference is that the predictor x is discrete or continuous.

How to use a categorical (discrete) variable in this formulation? The answer is provided by the *contrasts*: a coding of categories into numerical variable(s).

Consider a variable with two categories: colour (blue/red). This variable is replaced by a numeric variable taking the values 0 (blue) or 1 (red).

Blue
$$\rightarrow z = 0$$

$$\mathsf{Red} \to z = 1$$

The ANOVA and the linear regression models are the same, the difference is that the predictor x is discrete or continuous.

How to use a categorical (discrete) variable in this formulation? The answer is provided by the *contrasts*: a coding of categories into numerical variable(s).

Consider a variable with two categories: colour (blue/red). This variable is replaced by a numeric variable taking the values 0 (blue) or 1 (red).

Blue
$$\rightarrow z = 0$$

$$\text{Red} \rightarrow z = 1$$

We then fit the linear model $y = \beta z + \alpha$ which takes two forms:

$$\mathsf{Blue} \to y = \alpha \qquad \mathsf{Red} \to y = \beta + \alpha$$

$$y = \beta_1 z_1 + \beta_2 z_2 + \alpha$$

$$y = \beta_1 z_1 + \beta_2 z_2 + \alpha$$

	z_1	z_2
Blue	0	0
Red	1	0
Green	0	1

$$y = \beta_1 z_1 + \beta_2 z_2 + \alpha$$

	z_1	z_2	
Blue	0	0	$y = \alpha$
Red	1	0	$y = \beta_1 + \alpha$
Green	0	1	$y = \beta_2 + \alpha$

$$y = \beta_1 z_1 + \beta_2 z_2 + \alpha$$

For a variable with n categories, n-1 variables 0/1 are made.

There are two advantages in this approach:

➤ No need to consider special cases seperately (unbalanced samples, etc.) which require special formulae when doing sums of squares (SS) decomposition.

There are two advantages in this approach:

- No need to consider special cases seperately (unbalanced samples, etc.) which require special formulae when doing sums of squares (SS) decomposition.
- This makes a synthesis of several methods that were traditionally seen as distinct: simple and multiple regressions, ANOVA and ANCOVA in all its designs (one- or multiple-factor, hierarchical, etc.)

$$y = \beta x + \alpha$$
 Linear regression $y = \beta z + \alpha$ Analysis of variance (ANOVA) $y = \beta_1 x + \beta_2 z + \alpha$ Analysis of covariance (ANCOVA)

In all cases, the model is fitted by minimizing the sums of squares around the mean predicted by the model: $\sum_i (y_i - \bar{y}_i)^2$.

Two cases: continous \times categorical, categorical \times categorical

1. Continous \times categorical.

To code this interaction, a new variable is made with the product of x and z:

$$y = \beta_1 x + \beta_2 z + \beta_3 (xz) + \alpha$$

Two cases: continous \times categorical, categorical \times categorical

1. Continous \times categorical.

To code this interaction, a new variable is made with the product of x and z:

$$y = \beta_1 x + \beta_2 z + \beta_3 (xz) + \alpha$$

Blue: $y = \beta_1 x + \alpha$

Red: $y = \beta_1 x + \beta_2 + \beta_3 x + \alpha$

Two cases: continous \times categorical, categorical \times categorical

1. Continous \times categorical.

To code this interaction, a new variable is made with the product of x and z:

$$y = \beta_1 x + \beta_2 z + \beta_3 (xz) + \alpha$$

Blue: $y = \beta_1 x + \alpha$

Red: $y = \beta_1 x + \beta_2 + \beta_3 x + \alpha = (\beta_1 + \beta_3)x + \beta_2 + \alpha$

If no interaction ($\beta_3 = 0$), the slope is the same for both categories.

Two cases: continous \times categorical, categorical \times categorical

1. Continous \times categorical.

To code this interaction, a new variable is made with the product of x and z:

$$y = \beta_1 x + \beta_2 z + \beta_3 (xz) + \alpha$$

Blue: $y = \beta_1 x + \alpha$

Red: $y = \beta_1 x + \beta_2 + \beta_3 x + \alpha = (\beta_1 + \beta_3)x + \beta_2 + \alpha$

If no interaction ($\beta_3 = 0$), the slope is the same for both categories.

For n categories, n-1 new variables will be made to code the interaction.

2. Categorical \times categorical

New variables are made with the products of all the possible combinations 2 by 2 among the numeric codings of the two variables.

Male
$$\rightarrow z_1 = 0$$

Female $\rightarrow z_1 = 1$

Blue
$$\rightarrow z_2 = 0$$

Red $\rightarrow z_2 = 1$

$$y = \beta_1 z_1 + \beta_2 z_2 + \beta_3 (z_1 z_2) + \alpha$$

2. Categorical \times categorical

New variables are made with the products of all the possible combinations 2 by 2 among the numeric codings of the two variables.

Male
$$\rightarrow$$
 $z_1=0$
Female \rightarrow $z_1=1$
Blue \rightarrow $z_2=0$
Red \rightarrow $z_2=1$
 $y=\beta_1z_1+\beta_2z_2+\beta_3(z_1z_2)+\alpha$
Male Blue $y=\alpha$
Red $y=\beta_2+\alpha$
Female Blue $y=\beta_1+\alpha$
Red $y=\beta_1+\beta_2+\beta_3+\alpha$

$$\begin{array}{ccc} \text{Male} & \text{Blue} & y = \alpha \\ & \text{Red} & y = \beta_2 + \alpha \\ \text{Female} & \text{Blue} & y = \beta_1 + \alpha \\ & \text{Red} & y = \beta_1 + \beta_2 + \alpha \end{array}$$

The "contrast" between 'Blue' and 'Red' is the same for 'Male' 'Female' (and viceversa).

$$\begin{array}{ccc} \text{Male} & \text{Blue} & y = \alpha \\ & \text{Red} & y = \beta_2 + \alpha \\ \text{Female} & \text{Blue} & y = \beta_1 + \alpha \\ & \text{Red} & y = \beta_1 + \beta_2 + \alpha \end{array}$$

The "contrast" between 'Blue' and 'Red' is the same for 'Male' 'Female' (and viceversa).

For the case of two variables with respectively n_1 and n_2 categories $(n_1-1)(n_2-1)$ new variables 0/1 will be made.

Male Blue
$$y=\alpha$$

Red $y=\beta_2+\alpha$
Female Blue $y=\beta_1+\alpha$
Red $y=\beta_1+\beta_2+\alpha$

The "contrast" between 'Blue' and 'Red' is the same for 'Male' 'Female' (and viceversa).

For the case of two variables with respectively n_1 and n_2 categories $(n_1-1)(n_2-1)$ new variables 0/1 will be made.

For interactions of higher orders (between three variables or more) the combinations 3 by 3, 4 by 4, and so on, are used.

Male Blue
$$y=\alpha$$

Red $y=\beta_2+\alpha$
Female Blue $y=\beta_1+\alpha$
Red $y=\beta_1+\beta_2+\alpha$

The "contrast" between 'Blue' and 'Red' is the same for 'Male' 'Female' (and viceversa).

For the case of two variables with respectively n_1 and n_2 categories $(n_1-1)(n_2-1)$ new variables 0/1 will be made.

For interactions of higher orders (between three variables or more) the combinations 3 by 3, 4 by 4, and so on, are used.

1 Interactions require a lot of data to be detected and estimated correctly.

Linear Models With R

The model is specified with a *formula*:

```
y \tilde{\ } x1 + x2 additive effects
y \tilde{\ } x1 * x2 additive effects and interaction
identical to y \tilde{\ } x1 + x2 + x1:x2
```

Linear Models With R

The model is specified with a *formula*:

```
y \sim x1 + x2 additive effects
y \sim x1 * x2 additive effects and interaction
identical to y \sim x1 + x2 + x1:x2
```

The model is fitted with the function lm (or sometimes aov), e.g.:

```
lm(y ~x1 + x2)
summary(lm(y ~x1 + x2))
summary(lm(y ~x1 + x2, data = DF))
```

Tests of Effects

What is the difference between *effect* and *parameter*?

- For a continuous predictor, there is one parameter (aka coefficient).
- For a categorical predictor with n categories, there are n-1 parameters. When testing the statistical effect of such a predictor, we test for the significance of all parameters linked to this predictor. This is done with the function anova

Tests of Effects

What is the difference between *effect* and *parameter*?

- For a continuous predictor, there is one parameter (aka coefficient).
- For a categorical predictor with n categories, there are n-1 parameters. When testing the statistical effect of such a predictor, we test for the significance of all parameters linked to this predictor. This is done with the function anova

```
res.lm <- lm(.... res.aov <- aov(....
```

1. summary (res.aov): ANOVA table (= tests of the effets $\sim F$) summary (res.lm): tests of the parameters ($\sim t$)

1. summary (res.aov): ANOVA table (= tests of the effets $\sim F$) summary (res.lm): tests of the parameters ($\sim t$)

2. anova

ANOVA table by including the effects in the order of the formula (type I ANOVA).

- (a) anova (res.lm) and summary (res.aov) are identical.
- (b) The order of the variables in the formula is important if there are several categorical predictors and the design is *unbalanced* (can be checked with table).

3.	drop1: tests e	each effect indi	vidually <i>vs.</i> th	ne full model	(type II ANOVA).

3. drop1: tests each effect individually vs. the full model (type II ANOVA).

4. add1 tests one or several additional effects.

Ex.: if the initial model does not include interactions: add1(res, ~.^2) tests the addition of each interaction.

3. drop1: tests each effect individually vs. the full model (type II ANOVA).

4. add1 tests one or several additional effects.

Ex.: if the initial model does not include interactions: add1(res, ~.^2) tests the addition of each interaction.

5. predict calculates the values predicted by the model.

To get help on these functions: ?summary.lm, ?anova.lm, ?add1.lm, ?drop1.lm, ?predict.lm.

Models can be compared only if they are fitted to the same vector of responses:

- y ~ x and log(y) ~ x cannot be compared!
- > $y \sim x$ and $y \sim x + z$ will not be fitted to the same data if z has missing data (NA) and not x.

An Application

```
> library(MASS)
> data(leuk)
> names(leuk)
[1] "wbc" "ag" "time"
```

It is *always* crucial to do graphical exploratory analyses before fitting the models. Some examples of graphics here could be:

```
> plot(leuk$wbc, leuk$time)
> plot(leuk$wbc, leuk$time, log = "x")
> plot(leuk$ag, leuk$time)
> mod.leuk <- lm(time ~ log(wbc) * ag, data = leuk)</pre>
```

> summary(mod.leuk)

Call:

lm(formula = time ~ ag * log(wbc), data = leuk)

Residuals:

Min 1Q Median 3Q Max -65.400 -13.776 -7.617 20.805 65.588

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 55.065 64.171 0.858 0.39787 agpresent 251.391 83.887 2.997 0.00554 log(wbc) -3.859 6.615 -0.583 0.56419 agpresent:log(wbc) -22.011 8.711 -2.527 0.01722

Residual standard error: 32.64 on 29 degrees of freedom Multiple R-squared: 0.5574, Adjusted R-squared: 0.5116 F-statistic: 12.18 on 3 and 29 DF, p-value: 2.482e-05

> anova(mod.leuk)
Analysis of Variance Table

Response: time

Df Sum Sq Mean Sq F value Pr(>F)
ag 1 16346.3 16346.3 15.3459 0.0005004
log(wbc) 1 15758.6 15758.6 14.7942 0.0006062
ag:log(wbc) 1 6801.9 6801.9 6.3856 0.0172151
Residuals 29 30890.6 1065.2

col = c("red", "blue"), pch = 19)

Regression diagnostics

```
> par(mfcol = c(2, 2))
```

> plot(mod.leuk)

1. Values predicted by the model \hat{y}_i (as x) and residuals r_i (as y).

- 1. Values predicted by the model \hat{y}_i (as x) and residuals r_i (as y).
- 2. Predicted values (as x) and square root of standardized residuals, for the ith observation:

$$e_i = r_i / \left(\hat{\sigma} \sqrt{1 - h_{ii}} \right)$$

because the r_i 's are not independent and of the same variance (h_{ii} : variance of r_i).

- 1. Values predicted by the model \hat{y}_i (as x) and residuals r_i (as y).
- 2. Predicted values (as x) and square root of standardized residuals, for the ith observation:

$$e_i = r_i / \left(\hat{\sigma} \sqrt{1 - h_{ii}} \right)$$

because the r_i 's are not independent and of the same variance (h_{ii} : variance of r_i).

3. Since $e_i \sim \mathcal{N}(0, 1)$, the plot of the values predicted by the the normal distribution of the observed one must be on the line x = y.

- 1. Values predicted by the model \hat{y}_i (as x) and residuals r_i (as y).
- 2. Predicted values (as x) and square root of standardized residuals, for the ith observation:

$$e_i = r_i / \left(\hat{\sigma} \sqrt{1 - h_{ii}} \right)$$

because the r_i 's are not independent and of the same variance (h_{ii} : variance of r_i).

- 3. Since $e_i \sim \mathcal{N}(0, 1)$, the plot of the values predicted by the the normal distribution of the observed one must be on the line x = y.
- 4. $leverage = h_{ii}$, measures the influence (leverage effect) of each observation on the regression.

Two important points about linear models:

- ➤ The assumptions of normality is on the residuals, *not* on the variables.
 - Do not test the normality of the data before doing a regression.

Two important points about linear models:

- > The assumptions of normality is on the residuals, *not* on the variables.
 - Do not test the normality of the data before doing a regression.
- The (possible) log-transformation of the variables is not to normalize them, but to handle non-linear relationships.

Two important points about linear models:

- > The assumptions of normality is on the residuals, *not* on the variables.
 - Do not test the normality of the data before doing a regression.
- > The (possible) log-transformation of the variables is not to normalize them, but to handle non-linear relationships.

Terima kasih