
Linear Models, ANOVA, and ANCOVA

Emmanuel Paradis

Institut Pertanian Bogor
November 5, 2012



Three typical examples of biological data sets:

1. Measures of yield of peas on 24 plots with application of nitrogen (N), phos-
phorus (P), and/or potassium (K). The plots were distributed on 6 blocks of
4:

block N P K yield
1 1 0 1 1 49.5
2 1 1 1 0 62.8
3 1 0 0 0 46.8
...
23 6 0 1 1 53.2
24 6 0 0 0 56.0

2. Morphometric measurements on 200 individual of the crab Leptograpsus var-
iegatus. Five measures, sex and colour:



colour sex FL RW CL CW BD

1 B M 8.1 6.7 16.1 19.0 7.0

2 B M 8.8 7.7 18.1 20.8 7.4

3 B M 9.2 7.8 19.0 22.4 7.7

...

3. Survival times of 33 patients with leukemia with respect to a treatment and
white cell counts:

While cells counts Treatment Surv. time

1 2300 present 65

2 750 present 156

3 4300 present 100

...



A very general question in biology is: explaining variation in a quantity with respect
to one or several variables.

Suppose for a moment that the quantity we are studying is completely determined
by one or two variables: then prediction is easy and testing hypothesis is simple. . .



A very general question in biology is: explaining variation in a quantity with respect
to one or several variables.

Suppose for a moment that the quantity we are studying is completely determined
by one or two variables: then prediction is easy and testing hypothesis is simple. . .

. . . but in reality, it’s almost never the case.
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To start, let us consider a very simple situation: we want to compare two sam-
ples and want to test the hypothesis that they originate from the same statistical
population.

A statistical population is characterized by its distribution.

Taking two samples from the same statistical population will lead to differences
that are due to chance.

William Gosset (1876–1937), better known as “Student”, invented a test to com-
pare the means of two samples: the t-test. The null hypothesis (H0) is that both
samples come from the same population.

What if there are more than two samples? This is the analysis of variance invented
by R. A. Fisher (1890–1962).



Consider a case with four samples: the ANOVA assumes that each sample follows
a normal distribution with means µ1, µ2, µ3, and µ4.

The observations: x1i ∼ N (µ1, σ
2), x2i ∼ N (µ2, σ

2), etc.

H0: all four means are equal
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Similar assumptions are made in a linear regression:

yi = βxi + α+ εi εi ∼ N (0, σ2)

It means that for a given value of x: yi ∼ N (ȳ, σ2) with ȳ = βx+ α.

Suppose we do many observations of y for this value of x = −0.5:
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Suppose we do now many
observations of y for x =

0.5.
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In reality, we often don’t
have so many points, but
the assumptions of the lin-
ear still hold.
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The ANOVA and the linear regression models are the same, the difference is that
the predictor x is discrete or continuous.

How to use a categorical (discrete) variable in this formulation? The answer is
provided by the contrasts: a coding of categories into numerical variable(s).

Consider a variable with two categories: colour (blue/red). This variable is re-
placed by a numeric variable taking the values 0 (blue) or 1 (red).

Blue→ z = 0

Red→ z = 1

We then fit the linear model y = βz + α which takes two forms:

Blue→ y = α Red→ y = β + α
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Suppose there are three categories (blue, red, green): we substitute by two nu-
meric variables taking the values 0 or 1:

y = β1z1 + β2z2 + α

z1 z2
Blue 0 0
Red 1 0
Green 0 1

y = α
y = β1 + α
y = β2 + α

For a variable with n categories, n− 1 variables 0/1 are made.



There are two advantages in this approach:

ä No need to consider special cases seperately (unbalanced samples, etc.)
which require special formulae when doing sums of squares (SS) decomposition.



There are two advantages in this approach:

ä No need to consider special cases seperately (unbalanced samples, etc.)
which require special formulae when doing sums of squares (SS) decomposition.

ä This makes a synthesis of several methods that were traditionaly seen as dis-
tinct: simple and multiple regressions, ANOVA and ANCOVA in all its designs
(one- or multiple-factor, hierarchical, etc.)

y = βx+ α Linear regression
y = βz + α Analysis of variance (ANOVA)
y = β1x+ β2z + α Analysis of covariance (ANCOVA)

In all cases, the model is fitted by minimizing the sums of squares around the
mean predicted by the model:

∑
i(yi − ȳi)2.
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1. Continous × categorical.

To code this interaction, a new variable is made with the product of x and z:
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Interactions Among Variables

Two cases: continous × categorical, categorical × categorical

1. Continous × categorical.

To code this interaction, a new variable is made with the product of x and z:

y = β1x+ β2z + β3(xz) + α

Blue: y = β1x+ α

Red: y = β1x+ β2 + β3x+ α = (β1 + β3)x+ β2 + α

If no interaction (β3 = 0), the slope is the same for both categories.

For n categories, n− 1 new variables will be made to code the interaction.



2. Categorical × categorical

New variables are made with the products of all the possible combinations 2 by 2
among the numeric codings of the two variables.

Male→ z1 = 0
Female→ z1 = 1

Blue→ z2 = 0
Red→ z2 = 1

y = β1z1 + β2z2 + β3(z1z2) + α
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Red y = β1 + β2 + β3 + α
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If no interaction (β3 = 0):

Male Blue y = α
Red y = β2 + α

Female Blue y = β1 + α
Red y = β1 + β2 + α

The “contrast” between ‘Blue’ and ‘Red’ is the same for ‘Male’ ‘Female’ (and vice-
versa).

For the case of two variables with respectively n1 and n2 categories (n1−1)(n2−
1) new variables 0/1 will be made.

For interactions of higher orders (between three variables or more) the combina-
tions 3 by 3, 4 by 4, and so on, are used.

Interactions require a lot of data to be detected and estimated correcly.
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Linear Models With R

The model is specified with a formula:

y ˜ x1 + x2 additive effects
y ˜ x1 * x2 additive effects and interaction

identical to y ˜ x1 + x2 + x1:x2

The model is fitted with the function lm (or sometimes aov), e.g.:

lm(y ˜ x1 + x2)

summary(lm(y ˜ x1 + x2))

summary(lm(y ˜ x1 + x2, data = DF))



Tests of Effects

What is the difference between effect and parameter?

ä For a continuous predictor, there is one parameter (aka coefficient).

ä For a categorical predictor with n categories, there are n − 1 parameters.
When testing the statistical effect of such a predictor, we test for the signifi-
cance of all parameters linked to this predictor. This is done with the function
anova



Tests of Effects

What is the difference between effect and parameter?

ä For a continuous predictor, there is one parameter (aka coefficient).

ä For a categorical predictor with n categories, there are n − 1 parameters.
When testing the statistical effect of such a predictor, we test for the signifi-
cance of all parameters linked to this predictor. This is done with the function
anova

res.lm <- lm(....

res.aov <- aov(....



1. summary(res.aov): ANOVA table (= tests of the effets ∼ F )

summary(res.lm): tests of the parameters (∼ t)



1. summary(res.aov): ANOVA table (= tests of the effets ∼ F )

summary(res.lm): tests of the parameters (∼ t)

2. anova

ANOVA table by including the effects in the order of the formula (type I ANOVA).

(a) anova(res.lm) and summary(res.aov) are identical.

(b) The order of the variables in the formula is important if there are several
categorical predictors and the design is unbalanced (can be checked with
table).



3. drop1: tests each effect individually vs. the full model (type II ANOVA).
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tests the addition of each interaction.



3. drop1: tests each effect individually vs. the full model (type II ANOVA).

4. add1 tests one or several additional effects.

Ex.: if the initial model does not include interactions: add1(res, ˜.ˆ2)

tests the addition of each interaction.

5. predict calculates the values predicted by the model.

To get help on these functions: ?summary.lm, ?anova.lm, ?add1.lm,
?drop1.lm, ?predict.lm.



Models can be compared only if they are fitted to the same vector of re-
sponses:
ä y ˜ x and log(y) ˜ x cannot be compared!
ä y ˜ x and y ˜ x + z will not be fitted to the same data if z has

missing data (NA) and not x.



An Application

> library(MASS)

> data(leuk)

> names(leuk)

[1] "wbc" "ag" "time"

It is always crucial to do graphical exploratory analyses before fitting the mod-
els. Some examples of graphics here could be:

> plot(leuk$wbc, leuk$time)

> plot(leuk$wbc, leuk$time, log = "x")

> plot(leuk$ag, leuk$time)

> mod.leuk <- lm(time ˜ log(wbc) * ag, data = leuk)



> summary(mod.leuk)

Call:

lm(formula = time ˜ ag * log(wbc), data = leuk)

Residuals:

Min 1Q Median 3Q Max

-65.400 -13.776 -7.617 20.805 65.588

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.065 64.171 0.858 0.39787

agpresent 251.391 83.887 2.997 0.00554

log(wbc) -3.859 6.615 -0.583 0.56419

agpresent:log(wbc) -22.011 8.711 -2.527 0.01722



Residual standard error: 32.64 on 29 degrees of freedom

Multiple R-squared: 0.5574,Adjusted R-squared: 0.5116

F-statistic: 12.18 on 3 and 29 DF, p-value: 2.482e-05

> anova(mod.leuk)

Analysis of Variance Table

Response: time

Df Sum Sq Mean Sq F value Pr(>F)

ag 1 16346.3 16346.3 15.3459 0.0005004

log(wbc) 1 15758.6 15758.6 14.7942 0.0006062

ag:log(wbc) 1 6801.9 6801.9 6.3856 0.0172151

Residuals 29 30890.6 1065.2



> plot(leuk$wbc, leuk$time, log = "x", col = c("red",

"blue")[leuk$ag], pch = 19, xlab = "White cells",

ylab = "Survival time")

> legend("topright", legend = levels(leuk$ag),

col = c("red", "blue"), pch = 19)
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Regression diagnostics

> par(mfcol = c(2, 2))

> plot(mod.leuk)
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because the ri’s are not independant and of the same variance (hii: variance
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1. Values predicted by the model ŷi (as x) and residuals ri (as y).

2. Predicted values (as x) and square root of standardized residuals, for the ith
observation:

ei = ri
/(

σ̂
√

1− hii
)

because the ri’s are not independant and of the same variance (hii: variance
of ri).

3. Since ei ∼ N (0,1), the plot of the values predicted by the the normal distri-
bution of the observed one must be on the line x = y.

4. leverage = hii, measures the influence (leverage effect) of each observation
on the regression.
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